图示的压缩弹簧,当弹簧受轴向压力F时,在弹簧丝的任何横剖面上将作用着:扭矩 T = FRcosα ,弯矩 M=FRsinα,切向力FQ = Fcosα和法向力 NF = Fsinα (式中R为弹簧的平均半径)。由于弹簧螺旋角α的值不大(对于压缩弹簧为6~90 ),所以弯矩M和法向力N可以忽略不计。因此,在弹簧丝中起主要作用的外力将是扭矩T和切向力Q。α的值较小时,cosα≈ 1,可取T = FR 和 Q = F。这种简化对于计算的准确性影响不大。
当拉伸弹簧受轴向拉力F时,弹簧丝横剖面上的受力情况和压缩弹簧相同,只是扭矩T和切向力Q均为相反的方向。所以上述两种弹簧的计算方法可以一并讲述。
2.弹簧的强度
从受力分析可见,弹簧受到的应力主要为扭矩和横向力引起的剪应力,对于圆形弹簧丝
系数Ks可以理解为切向力作用时对扭应力的修正系数,进一步考虑到弹簧丝曲率的影响,可得到扭应力
式中K为曲度系数。它考虑了弹簧丝曲率和切向力对扭应力的影响。一定条件下钢丝直径
下一篇: